594 research outputs found

    Neural Mechanism of Blindsight in a Macaque Model

    Get PDF
    Some patients with damage to the primary visual cortex (V1) exhibit visuomotor ability, despite loss of visual awareness, a phenomenon termed “blindsight”. We review a series of studies conducted mainly in our laboratory on macaque monkeys with unilateral V1 lesioning to reveal the neural pathways underlying visuomotor transformation and the cognitive capabilities retained in blindsight. After lesioning, it takes several weeks for the recovery of visually guided saccades toward the lesion-affected visual field. In addition to the lateral geniculate nucleus, the pathway from the superior colliculus to the pulvinar participates in visuomotor processing in blindsight. At the cortical level, bilateral lateral intraparietal regions become critically involved in the saccade control. These results suggest that the visual circuits experience drastic changes while the monkey acquires blindsight. In these animals, analysis based on signal detection theory adapted to behavior in the “Yes–No” task indicates reduced sensitivity to visual targets, suggesting that visual awareness is impaired. Saccades become less accurate, decisions become less deliberate, and some forms of bottom-up attention are impaired. However, a variety of cognitive functions are retained such as saliency detection during free viewing, top–down attention, short-term spatial memory, and associative learning. These observations indicate that blindsight is not a low-level sensory-motor response, but the residual visual inputs can access these cognitive capabilities. Based on these results we suggest that the macaque model of blindsight replicates type II blindsight patients who experience some “feeling” of objects, which guides cognitive capabilities that we naïvely think are not possible without phenomenal consciousness

    Hidden self-energies as origin of cuprate superconductivity revealed by machine learning

    Get PDF
    人工ニューラルネットワークで明らかになった高温超伝導の隠れた起源. 京都大学プレスリリース. 2021-11-09.Experimental data are the source of understanding matter. However, measurable quantities are limited and theoretically important quantities are sometimes hidden. Nonetheless, recent progress of machine-learning techniques opens possibilities of exposing them only from available experimental data. In this paper, after establishing the reliability of the method in various careful benchmark tests, the Boltzmann machine method is applied to the angle-resolved photoemission spectroscopy spectra of cuprate high-temperature superconductors, Bi₂Sr₂CuO₆₊[δ] (Bi2201) and Bi₂Sr₂CuO₈₊[δ] (Bi2212). We find prominent peak structures in both normal and anomalous self-energies, but they cancel in the total self-energy making the structure apparently invisible, while the peaks make universally dominant contributions to superconducting gap, hence evidencing the signal that generates the high-Tc superconductivity. The relation between superfluid density and critical temperature supports involvement of universal carrier relaxation associated with dissipative strange metals, where enhanced superconductivity is promoted by entangled quantum-soup nature of the cuprates. The present achievement opens avenues for innovative machine-learning spectroscopy method to reveal fundamental properties hidden in direct experimental accesses

    Discriminatory Analysis of Discharged Gas and Heavy Oils in the Sea

    Get PDF
    Gas and heavy oils discharged into the sea were discriminated using gas chromatography-mass spectrometry (GC-MS), gas chromatography (GC-FID) and infrared spectroscopy (FT-IR). The GC-MS focused on the determination of the biomarkers, such as hopanes, norhopanes and triaromatic steranes, which were detected from heavy oil, but were hardly observed from gas oil. The discriminative analysis using GC-FID of the methylnaphthalenes showed a discrimination with a ratio of ((2-methylnaphthalene)+(1-methylnaphthalene))/tridecane. The ratios for the gas oils were less than 1.0, but those for the heavy oils were 1.0 or higher. These oils were distinguished in comparison to the FT-IR data from three peaks at 811, 742 and 723 cm-1 which were assigned to the CH bending modes for 2 and 4 hydrogens and a methylene framework, respectively. The order for the heavy oil was 723 < 742 < 811 cm-1, while that for the gas oil was 742 < 811< 723 cm-1. Moreover, the absorption intensity at 1603 cm-1 for the heavy oil was higher than that for the gas oil. An absorption at 475 cm-1 (out-of-plane ring vibration) was also observed for the heavy oil, but not for the gas oil. In combination of the GC results with the FT-IR, 2-methylnaphthalene and 1-methylnaphthalene were contained in greater amounts in the heavy oil than in the gas oil, which were derived from the light cycle oil. Thus, the heavy oils discharged from ships and drifted on the seashore were discriminated from the original heavy oils and the gas oils.Key words: Heavy oil, Gas oil, Identification, Methylnaphthalene, Hopan

    Protocol for making an animal model of “blindsight” in macaque monkeys

    Get PDF
    Patients with damage to the primary visual cortex (V1) can respond correctly to visual stimuli in their lesion-affected visual field above the chance level, an ability named blindsight. Here, we present a protocol for making an animal model of blindsight in macaque monkeys. We describe the steps to perform pre-lesion training of monkeys on a visual task, followed by lesion surgery, post-lesion training, and evaluation of blindsight. This animal model can be used to investigate the source of visual awareness. For complete details on the use and execution of this protocol, please refer to Yoshida et al. (2008)1 and Takakuwa et al. (2021)

    Cross-education and detraining effects of eccentric vs. concentric resistance training of the elbow flexors

    Get PDF
    Background: Unilateral resistance training increases the strength of the contralateral non-trained homologous muscles known as the cross-education effect. We tested the hypothesis that unilateral eccentric resistance training (ET) would induce greater and longer-lasting cross-education effect when compared with concentric resistance training (CT). Methods: Young (20–23 y) participants were allocated to ET (5 males, 4 females) or CT (5 males, 4 females) group that performed unilateral progressive ET or CT of the elbow flexors, twice a week for 5 weeks (10 sessions) followed by a 5-week detraining, and control group (7 males, 6 females) that did not perform any training. Maximum voluntary isometric contraction torque of the elbow flexors (MVIC), one-repetition maximum of concentric dumbbell curl (1-RM), and biceps brachii and brachialis muscle thickness (MT) were measured from the trained and non-trained arms before, several days after the last training session, and 5 weeks later. A ratio between the trained and non-trained arms for the change in MVIC or 1-RM from pre- to post-training (cross-body transfer ratio) was compared between ET and CT groups. Results: The control group did not show significant changes in any variables. Both ET and CT increased (P \u3c 0.05) MVIC (22.5 ± 12.3 % vs. 26.0 ± 11.9 %) and 1-RM (28.8 ± 6.6 % vs. 35.4 ± 12.9 %) of the trained arm without a significant difference between groups. MVIC was maintained after detraining for ET but returned to the baseline for CT, and 1-RM was maintained after detraining for both ET and CT. For the non-trained arm, MVIC (22.7 ± 17.9 % vs. 12.2 ± 10.2 %) and 1-RM (19.9 ± 14.6 % vs. 24.0 ± 10.6 %) increased similarly (P \u3e 0.05) after ET and CT, and MVIC returned to the baseline after detraining, but 1-RM was maintained for both groups. An increase (P \u3c 0.05) in MT was found only after ET for the trained arm (7.1 ± 6.1 %). The cross-body transfer ratio for MVIC was greater (P \u3c 0.05) for ET (90.9 ± 46.7 %) than CT (49.0 ± 30.0 %). Conclusions: These results did not support the hypothesis and showed similar changes in the most of the variables between ET and CT for the trained and non-trained arms, and strong cross-education effects on MVIC and 1-RM, but less detraining effect after ET than CT on MVIC of the trained arm. Trial registration: University Hospital Medical Information Network Clinical Trials Registry (UMIN000044477; Jun 09, 2021)

    The posterior parietal cortex contributes to visuomotor processing for saccades in blindsight macaques

    Get PDF
    Patients with damage to the primary visual cortex (V1) lose visual awareness, yet retain the ability to perform visuomotor tasks, which is called "blindsight." To understand the neural mechanisms underlying this residual visuomotor function, we studied a non-human primate model of blindsight with a unilateral lesion of V1 using various oculomotor tasks. Functional brain imaging by positron emission tomography showed a significant change after V1 lesion in saccade-related visuomotor activity in the intraparietal sulcus area in the ipsi- and contralesional posterior parietal cortex. Single unit recordings in the lateral bank of the intraparietal sulcus (lbIPS) showed visual responses to targets in the contralateral visual field on both hemispheres. Injection of muscimol into the ipsi- or contralesional lbIPSs significantly impaired saccades to targets in the V1 lesion-affected visual field, differently from previous reports in intact animals. These results indicate that the bilateral lbIPSs contribute to visuomotor function in blindsight

    Joint angles in elbow flexor unilateral resistance exercise training determine its effects on muscle strength and thickness of trained and non-trained arms

    Get PDF
    The present study compared two unilateral arm curl resistance exercise protocols with a different starting and finishing elbow joint angle in the same ROM for changes in elbow flexors strength and muscle thickness of the trained and non-trained arms. Thirty-two non-resistance trained young adults were randomly assigned to one of the three groups: extended joint training (0°-50°; EXT, = 12); flexed joint training (80°-130°; FLE, = 12); and non-training control ( = 8). The exercise training was performed by the dominant arms twice a week for 5 weeks with gradual increases in the training volume over 10 training sessions, and the non-dominant (non-trained) arms were investigated for the cross-education effect. Maximal voluntary contraction torque of isometric (MVC-ISO), concentric (MVC-CON), and eccentric contractions (MVC-ECC), and thickness (MT) of biceps brachii and brachialis of the trained and non-trained arms were assessed at baseline and 4-8 days after the last training session. The control group did not show significant changes in any variables. Significant ( \u3c 0.05) increases in MVC-ISO torque (16.2 ± 12.6%), MVC-CON torque (21.1 ± 24.4%), and MVC-ECC torque (19.6 ± 17.5%) of the trained arm were observed for the EXT group only. The magnitude of the increase in MT of the trained arm was greater ( \u3c 0.05) for EXT (8.9 ± 3.9%) than FLE (3.4 ± 2.7%). The cross-education effect was evident for MVC-ISO (15.9 ± 14.8%) and MVC-CON (16.7 ± 20.0%) torque of the EXT group only. These results suggest that resistance training at the extended elbow joint induces greater muscle adaptations and cross-education effects than that at flexed elbow joint
    corecore